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Abstract

For many domestic and international institutions, scholars are unable to

observe the individual roll call voting records and only have access to a list of

collective adoption or rejection decisions for each proposal. This paper proposes

a novel statistical model, the multivariate probit model with partial observability

that enables scholars to use an ‘aggregate voting record’ to study the determinants

of individual voting in institutions. The model is built to estimate the same effects

and quantities of interest as an ordinary probit model that one might estimate if

the roll call voting records for a series of proposal would be available. Taking

a Bayesian perspective for inference, I derive a Gibbs sampler with a double

augmentation step that makes the model estimation tractable. Using open-source

software that accompanies this paper, I demonstrate the model’s applicability

using simulated and real data from U.S. State Supreme Court abortion decisions

in the period 1980-2006 and on U.N. Security Council deployment decisions for

U.N. peace operations after the Cold War.
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1 Introduction

In domestic and international institutions, political actors decide by the means of

voting. The question of what determines political actors’ voting decisions in particular

circumstances is widely studied in political science1. Unfortunately, in many political

institutions excluding the U.S. Congress, only parts, or worse, none of the roll call

voting records are available (Zamora, 1980; Saalfeld, 1995; Hug, 2005; Haftel and

Thompson, 2006). According to Hug (2005) for example, there are only 20 out of 114

legislatures worldwide where all votes are cast as roll calls and published. The outlook

is no better in the case of other international and domestic institutions such as courts,

central banks or intergovernmental institutions2. Important institutions such as the

IMF, the European Court of Justice and the European Central Bank do not publish

consistently their roll call voting records.

When roll call voting records are unavailable, scholars resorted to analyzing the

aggregate voting record, that is, a list of which proposals passed or failed. Substituting

an analysis of how political actors decide with an analysis of how the ‘institution decides

is problematic for three reasons.

First, if scholars possess independent variables that exhibit variation across actors

and proposals, they are unable to systematically include the variation across actors in

their statistical model of the aggregate voting record. In the best case, excluding this

information will only make inference more uncertain.

Second, if scholars choose to aggregate their independent variables which exhibit varia-

tion across actors with some statistic (e.g. their mean), they amplify the aggregation of

the data. When using the newly created surrogate variables in a model of the aggregate

voting record, scholars’ inference will inevitably be subject to the same concerns scholars

raised with respect to ecological studies for many years (see e.g. Robinson, 1950; King,

1997; King et al., 1999).

Third, even if scholars know with certainty that actors’ choices only depend on the

characteristics of the proposal, their model of the aggregate voting record only allows a

quantification of how the probability of the proposal passage changes given changes in

the independent variables. An actor’s probability to vote for a proposal, which can

1For American Politics e.g. Levitt (1996); Bailey and Brady (1998); Hiscox (2002); Broz (2005);
Comparative Politics e.g. Hibbing and Marsh (1987); Desposato (2001); Schonhardt-Bailey (1998)
and International Relations e.g. Boockmann (2003); Aspinwall (2007); Voeten (2004).

2In 43 legislatures votes are required to be secret. In the remaining 72 legislatures, only specific
votes are roll calls (43) or where representatives can request a roll call (28). To the author’s knowledge,
a similar systematic study does not exist for other domestic or international institutions. However, for
examples see Sabel (2006); Zamora (1980)
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be substantially larger or smaller to the probability of the proposal passing, can not

be computed. Consequently, the substantive effect of independent variables might be

underestimated.

I propose a novel statistical model, the multivariate probit model with partial observ-

ability (partial m-probit), that allows scholars to study the determinants of actors’ vote

choices in the absence of roll call voting records. Using an aggregate voting record, the

model is build to estimate the same effects and quantities of interest as an ordinary

probit model that one might estimate if the roll call voting records for a series of

proposals would be available. The model is implemented in an open-source R-package3.

I construct the likelihood function of the partial m-probit building on the observation

that an aggregate outcome (adoption or rejection of a proposal) is a deterministic

function of actors’ voting choices (a vote profile), which are probabilistic functions of

observable covariates. Given a voting rule, there is a finite number of vote profiles that

can generate the observed aggregate outcome. Consequently, the probability for an

aggregate outcome is the sum over the probabilities of each of the vote profiles. Taking

a Bayesian perspective for inference, I derive a double-augmented Gibbs sampler to

sample from the posterior density without actually calculating all possible vote profiles.

My approach is different to classical ecological inference in the social science (Robinson,

1950; Goodman, 1953; King, 1997; King et al., 1999) in that I start with the assumption

that the analyst observes all independent variables for all actors and that the set

of individuals that vote is rather small. My approach is similar to Przeworski and

Vreeland’s (2002) model of international bilateral cooperation confronting the problem

that the observable outcome ‘non-cooperation’ is the result of the unobservable decision

of either both or one country not cooperating.

While the partial m-probit estimates the same effects as an ordinary probit on the roll

call voting records, the inference using an aggregate voting record will come with more

uncertainty, since aggregation reduces the available information for inference. Using

simulated data as well as real data from U.S. State Supreme Court abortion decisions

(Caldarone et al., 2009), I illustrate that the inferential uncertainty and computational

costs increase primarily as the number of actors increases when analysts have to work

with the aggregate voting record instead of the roll call voting records.

To demonstrate that the partial m-probit can also be fruitfully employed even if the

analyst assumes that actors’ choices only depend on the characteristics of the proposal,

I expand an analysis by Hultman (2013) on U.N. peace operation deployment decisions.

Using a probit model on the aggregate voting record, she finds that the number of

3consilium - Estimating multivariate probit models with partial observability.
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civilians killed only modestly affect the decision of the U.N. Security Council to deploy

peace operations. Using the partial m-probit, I expand the analysis and estimate a

strong effect on a Council member’s probability to vote for the deployment of a mission.

2 Multivariate Probit with Partial Observability

Let there be M political actors (i = 1, ..., M) and J proposals (j = 1, ..., J). An actor’s

vote is a binary random variable, yij ∈ {0, 1} corresponding to actors’ binary vote

choice (no or yes). Crucially, the votes are not observed. Each actor’s vote is governed

by a vector of K observed covariates, denoted xij. While the analyst does not observe

the votes, he observes the aggregate outcome which I denote with bj ∈ {0, 1}, where

bj is zero if the proposal was rejected. A generic dataset that clarifies the notation

appears in table 1.

Observed Unobserved

Actor Proposal Covariates Outcome Vote

1 1 x11
b1

y11
2 1 x21 y21
...

...
...

...
M 1 xM1 yM1
...

...
...

...
...

1 J x1J

bJ

y1J
2 J x2J y2J
...

...
...

...
M J xMJ yMJ

Table 1: A generic dataset for an institution with M political
actors, having voted on J proposals. The observed outcome (bj) is
realized given a voting rule and the (unobserved) votes (yij). For
each actor-proposal combination there is a vector of observable
covariates (xij).

Notice, that if the votes had been observed, the data could be analyzed with standard

discrete choice models. The aggregation of the voting record complicates matters

here and it is this complication that the partial m-probit is constructed to address.

My setting is different to ecological studies, since the independent variables are not

aggregated and instead fully observed and bj is binary instead of a continuous or count

variable. The setting also differs to aggregate studies, where the analyst usually only
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observes a sample of the actors4. The setting I consider is one in which the values for

all independent variables for all actors are available to the analyst.

2.1 Likelihood

I introduce further notation to set up the model. Let Xj be an M × K matrix that

collects all observed covariates for all M actors for each proposal j and let yj be the

vector of length M collecting all votes for the corresponding proposal. I refer to this

vector as vote profile. I define, y∗j to be the latent utility for M actors for a decision

j. Without loss of generality I assume that actor i votes yes, if y∗ij ≥ 0. I follow

the literature in assuming that the latent utility is linear function of the observable

covariates with the corresponding parameter vector β.

Let the voting rule that governs the adoption or rejection of a proposal be a q-rule

(with threshold R), such as simple majority rule5. Using this notation, the multivariate

probit with partial observability, abbreviated as the partial m-probit, can be written

as follows:

y∗j = Xjβ + εj

εj
iid∼ φ(0, 1)

yij =

{
0 if y∗ij < 0

1 otherwise
,

bj =

{
0 if

∑M
i=1 yij < R

1 otherwise
,

(1)

where φ(0, 1) is the standard multivariate normal density. I identify the model by

setting the covariance matrix to the identity matrix. In other words, for all proposals,

the error terms of the actors are assumed to be uncorrelated and actors make their

choices independently. I discuss this assumption in the final section.

4Aggregate data analysis is growing literature in Biostatistics (Prentice and Sheppard, 1995;
Wakefield and Salway, 2001; Hanseuse and Wakefield, 2008), but see Glynn et al. (2008) for a
social science application. Aggregate studies differ from ecological studies in two key aspects: They
incorporate additional, partially available individual level data and they model the aggregate outcome
based on models of individual behavior (Wakefield and Salway, 2001).

5I here assume that there is one and only one voting rule. I also assume that this rule is known
with certainty and followed strictly. Note, that variation of the voting rule over decisions (e.g. Rj) or
more elaborated voting rules can be easily incorporated. I use a simple q-rule to reduce notational
clutter.
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Multi- or k-variate probit models are usually employed to allow for correlated choices

by estimating the correlation matrix from the data. Similar to the selection model

for continuous outcomes popularized by Heckman (1976), bi-variate probit models as

selection models, for instance, allow for correlated error terms across a sample selection

and a structural equation with binary outcomes (Dubin and Rivers, 1989; Sartori,

2003). The problem the partial m-probit address is not one of correlated (sequential)

choices, but of non-observability of the simultaneous choices.

The probability for observing an aggregate outcome is the product over the vote profiles’

probabilities that could have realized the outcome. The probability for each of these

vote profiles is the product over the individual choice probabilities which are – as in a

probit model – a linear function of observed covariates and parameters. The product

over all aggregate outcome probabilities yields the likelihood of the data. Next, I

define the probability for one vote profile and the sets of hypothetical vote profiles that

can realize a particular aggregate outcome. Using these two definitions, I state the

likelihood of the data.

Using the assumption of independent choice making, the probability for observing a

vote profile yj is the product over the individual choice probabilities on proposal j or

equivalently integrating over the latent utility in each dimension on the interval that

corresponds to the observed vote choice. Formally:

f(yj, Xj|β) =

∫
p1j

...

∫
pMj

φ(y∗j |Xjβ)dy∗j

= ΦP(yj)
(Xjβ),

(2)

where φ(.) is the M-dimensional multivariate normal density and pij is the interval

that corresponds to the vote choice yij in the profile yj, e.i. pij = [0,∞) if yij = 1 and

pij = (-∞, 0) if yij = 0. To write this more compactly, I define P(yj) to be the function

that generates all p1j, ..., pMj given yj and let ΦP(yj)
(·) be the implied distribution

function.

Let ỹ be a hypothetical vote profile and let V+ be the set of all hypothetical vote

profiles for which
∑

i ỹi ≥ R holds. In other words, this set contains all vote profiles

that realize an adoption outcome (bj = 1). Let V- be the complement set. Both sets

are always finite but potentially large.

Using these two definitions, I can write the probability for bj = 1 and its complement

as the sum over the probabilities for all hypothetical vote profiles that can realize bj = 1

or bj = 0. The likelihood is incidental by taking the product over all decisions and let

5



bj in the exponent select the term that corresponds to the observed outcome. Formally,

I write the likelihood of the data as:

L(β|X, b) =
∏

j

( adoption probability︷ ︸︸ ︷∑
ỹ∈V+

[
ΦP(ỹ)(Xjβ)

]bj
)
×

( ∑
ỹ∈V-

[
ΦP(ỹ)(Xjβ)

]1-bj

︸ ︷︷ ︸
rejection probability

)
.

(3)

2.2 Three Special Cases

The likelihood of the partial m-probit embodies three special cases. These special cases

provide some intuition behind the model’s inferential logic, its relationship to other

applications of probit models with partial observability, as well as the circumstances in

which the partial m-probit can be fruitfully employed.

First, when the analyst knows the vote profiles, the size of the sets V+ and V- is

equal to one and contains the observed vote profile for each proposal6. Then, the

model reduces to the multivariate probit model which is, since the covariance matrix is

assumed to be the identity matrix, an ordinary probit model with J×M observations.

Two insights follow: First, in principle, analysts can obtain the same estimates from

an aggregate voting record as from the roll call voting records. Second, the partial

m-probit should only be employed if analysts feel comfortable using an ordinary probit

model when they also have access to the roll call voting records.

Since a model with the observed vote profiles is a special case of the partial m-probit,

analysts will obtain the same coefficient estimates, provided that the number of observed

proposals (J) is sufficiently large. The price analysts pay for not observing the roll

call votes is increased uncertainty about the coefficient estimates. The size of this

uncertainty-increase is largely a function of the size of the sets V+/V- which are in

turn primarily a function of the numbers of actors (M). I demonstrate this numerically

in the Monte Carlo experiments (next section).

The second special case arises when M = 2 and a unanimity voting rule. In this case the

partial m-probit reduces to the static case of the bilateral cooperation model (Przeworski

6An interesting extension of the model would be to allow for the incorporation of partially observed
votes. As already indicated in the introduction, in some international institutions, certain votes are
actually observable. However, this extension remains outside of the scope of this paper.
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and Vreeland, 2002) which is a special case of the bi-variate probit model with partial

observability (Poirier, 1980). To see the equivalence, note that V+ contains only a

single element, namely the unanimity vote profile. The first product term in equation 3

thus reduces to ΦP(yj={1,1})(Xjβ), which can also be written as Φ(xjAβ)× Φ(xjBβ),

where A and B are the two actors. The complement probability to this probability

gives the second term in equation 3. The resulting likelihood function L(β|X, b) =∏
j(Φ(xjAβ)Φ(xjBβ))bj × (1 - Φ(xjAβ)Φ(xjBβ))1-bj is identical to the likelihood given

in Przeworski and Vreeland (2002, eq. 3).

The third special case arises when the analyst assumes that all actors are interchangeable

with respect to their utility function. In this case, the function in equation 1 can be

written only with variables that are constant across actors but vary over decisions, that

is xj = x1j... = xMj. Invoking this assumption allows the likelihood function to be

rewritten as follows:

L(β|X, b) =
∏

j

[( M∑
k=R

(
M

k

)
Φ(xjβ)k(1 - Φ(xjβ))M-k

)]bj
×

[
1 -

( M∑
k=R

(
M

k

)
Φ(xjβ)k(1 - Φ(xjβ))M-k

)]bj-1

.

(4)

Defining the function B(η; M, R) =
∑M

k=R
(M

k

)
Φ(η)k(1 - Φ(η))M-k, the equation simpli-

fies further to:

L(β|X, b) =
∏

j

[
B(xjβ; M, R)

]bj
×

[
1 - B(xjβ; M, R)

]bj-1

.

(5)

The function B(η; M, K) can be interpreted as an institution-specific link functiond

analog to the familiar logit or probit link functions7 in the Generalized Linear Model

framework (McCullagh and Nelder, 1989). The advantage of this analog is that analysts

feeling comfortable making the interchangeability assumption with respect to the actors,

only have to switch the link function in their preferred GLM fitting routine in order

7Link functions have to be monotonic and differentiable (McCullagh and Nelder, 1989, p. 27).
The ‘B-link’ is a composite function of a binomial complementary cdf and normal cdf (probit).
Differentiability and monotonicity with respect to η follow directly from the definition of a cumulative
density function and the chain rule of differentiation.
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to obtain coefficient estimates (and quantities of interest) with respect to actors’ vote

choices.

Only in the trivial case where M = 1, coefficient estimates will not change when users

apply the B-link instead of a probit link. In all other cases, coefficient estimates will

change as they change when analysts switch from logit to probit link for instance.

Importantly, predicted probabilities about the aggregate outcome will usually be similar

if not equal. Simulations suggest that the differences increase when M and R increase.

2.3 Quantities of Interest

As with coefficients from all non-linear models, the coefficients from a partial m-probit

are not straightforward to interpret since the marginal effects are not only a function of

the coefficients but also of the covariates. The common strategy to ease interpretation

is to calculate the predicted probabilities for a combination of chosen values for the

covariates.

There are two stylized sets of predicted probabilities that are potentially of interest for

analysts. First, the predicted probability to observe the aggregate outcome conditional

on a combination of chosen values for the covariates for all actors, denoted by P(b = 1|X̃)

and second, the predicted probability of a vote conditional on a combination of chosen

values for the covariates for one particular actor i, denoted by P(yi = 1|x̃i).

The calculation of the predicted probability of a vote is straightforward. The calculation

of the predicted probability of the aggregate outcome is more involved, because it

depends on the hypothetical vote profiles induced by a voting rule. Since the number

of vote profiles is exponentially increasing with the number of actors, the practical

computation can be time consuming and memory intensive. Therefore, it is useful to

approximate the predicted probability using a Monte Carlo scheme.

The scheme, which I outline in the appendix, builds upon the Gibbs Sampler presented in

the next section. I suggest to draw votes for all actors conditional on the corresponding

chosen values for the covariates and a simulated draw from the posterior density of the

coefficients. Using the simulated votes, one can then calculate the aggregate outcome

using the applicable voting rule. Repeating this calculation a few hundred times and

for all posterior draws characterizes the posterior density of the predicted probability

of the aggregate outcome.
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2.4 Double Augmented Gibbs Sampler

Bayesian inference8 requires one to specify a prior density for the parameters (the

coefficients). I follow conventions and assume that they are jointly normal with prior

mean b0 and a diagonal covariance matrix B0. The posterior density is proportional

to the product of the likelihood function in equation 3 and the prior density (see Gill,

2008; Jackman, 2009, for an introduction to Bayesian Statistics).

As in many Bayesian models, the posterior density cannot be marginalized analytically,

which prompts me to simulate from the posterior density and then use the simulated

samples to characterize the marginal posterior density of the coefficients. I adopt a

Gibbs sampler for this simulation (Geman and Geman, 1984). A Gibbs sampler is

a Markov Chain Monte Carlo algorithm that can be used to obtain samples from a

multivariate probability density such as the posterior density when the full conditional

densities are known and easy to sample.

A Gibbs sampler requires deriving the conditional probability density function (pdf)

for all unknown quantities in the model. Lauritzen et al. (1990) have shown that if a

joint density can be written as a directed acyclic graph (DAG), the conditional pdf of

any of the DAG’s nodes (θ1, ....θj, ...θJ) is given by:

f(θj|θ¬j) ∝ f(θj|parents[θj])×
∏

w∈chidren[θj]

f(w|parents[w]), (6)

where θ¬j denotes all nodes in the DAG other than θj. The functions ‘parents[q]’

collects all nodes that are connected to a node q via an inward edge and the function

‘children[p]’ collects all nodes that are connected via an outward edge to p.

A DAG representation of the model in equation 3 appears in figure 1(a). Each node is

a random variable. Rectangular nodes indicate observed variables (the data), circle

nodes represent unobserved variables. An arrow indicates the dependencies between

these variables and the plates indicate the J replications. The conditional pdf for β in

figure 1(a) is not a member of a known parametric family from which samples can be

easily drawn.

8If one wishes to proceed with frequentist inference, one might use a maximum likelihood estimator.
In this case, the log-likelihood needs to be maximized with respect to the parameters. Two difficulties
will arise. First, the log-likelihood is not guaranteed to be log-concave. While the multivariate
standard normal cdf is log-concave, the sum of log concave functions is not necessarily log-concave
(e.g. An, 1998; Boyd and Vandenberghe, 2004). This suggests that for numerical optimization the
choice of starting values is important (Altman et al., 2004, p. 84). Second, the number of hypothetical
vote profiles is exponentially increasing with the number of actors (|V+⋃V-| = 2M). For a simple
numerical optimization algorithm, any additional member implies that either the requirement memory
size or the length of the computation doubles.
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.

bj

(b) double augmented

Figure 1: Two directed acyclic graphs of the partial m-probit.

In order to derive easy-to-sample-from full conditionals, I follow a data augmentation

strategy (Tanner and Wong, 1987) and introduce two variables from the model setup

explicitly. The augmented DAG appears in 1(b). The first augmentation is identical to

the Albert-Chib augmentation in a Bayesian (multivariate) probit model (Albert and

Chib, 1993; Chib and Greenberg, 1998) introducing y∗j , the latent utility, explicitly

in the model. The second augmentation augments the latent utility with yj, the

unobserved votes. Since the second augmentation augments the first, I refer to this

Gibbs sampler as double-augmented Gibbs sampler.

Applying the result from Lauritzen et al. (1990) yields three easy-to-sample-from full

conditional densities for the three unobserved variables in the DAG (see appendix for

their functional form). The Gibbs sampler is an iterative sampling from these densities

until convergence. The Gibbs sampler is implemented in an open-source R-package

Consilium9 which accompanies this paper. The source code is written in C++ but can

be directly called from R (R Core Team, 2014) using the Rcpp package (Eddelbuettel

and François, 2011).

3 Monte Carlo Experiments

I conduct 16 Monte Carlo experiments to verify that the Gibbs sampler (and its

implementation) obtains samples from the posterior density and to compare inference

from the partial m-probit with inference from an ordinary probit model if the roll call

9consilium - Estimating multivariate probit models with partial observability.
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voting records are available. For both models, I use the same vague priors (b0 = 0,

B0 = 100). I rely on pretests to calibrate the Gibbs sampler run-length for both the

partial m-probit and the ordinary probit model10.

For each of the 16 experimental conditions, I run 250 simulations. Across the 16

conditions, I vary the sample size (250, 500), the number of actors (5,10,50,100) and the

voting rule (simple majority, 2
3 super-majority). Each actor’s vote choice is governed

by two variables: A constant x0ij = 1 and uniform distributed variable x1ij ∼ U(-2, 2).

The coefficients for these variables are also drawn from a uniform density with a range

of [-1, 1]. I refer to these values informally as ‘true coefficient values’. If the aggregate

outcomes exhibit less than 5% of either zeros or ones, that is if there is not a minimum

amount if variation in the dependent variable, I discard the simulated data and repeat

the simulation.

For all conditions I record the Gelman and Rubin (1992) convergence diagnostic, the

correlation between the true coefficient values and the posterior means and the coverage

rate (the share of true coefficients contained in the 95% posterior interval). If the

Gibbs sampler works as expected, the correlation between the true coefficient values

and the posterior means should be very close to 1 and the approximate 95% of the true

coefficients should be inside the 95% posterior interval.

Table 3 (appendix) summarizes the results of the 16 experiments. In general, the

coverage rate and correlation are very high as expected. This suggests that the Gibbs

sampler and its implementation work as expected and recover the true coefficient values.

Figure 2 illustrates the results from one of the experiments (10 actors, majority rule,

500 proposals). Each of the two scatter plots shows the true coefficient value plotted

against the posterior mean estimate along with the 95% posterior interval. The left

panel shows the intercept, the right panel the slope coefficient. The red circles indicate

the posterior means for which the Gelman and Rubin (1992) convergence diagnostic

does not support my choice of run length.

In figure 2, the smallest simulated intercept coefficient is much larger than the bound

of the uniform distribution from which the coefficients have been simulated. This

difference is a consequence of my choice to only estimate the partial m-probit if the

aggregate outcome exhibits a minimum amount of variation. While my 5%-cutoff was

arbitrary, the effect reveals a general subtle point: Aggregation reduces information

10For the probit model, I use the MCMCpack probit model (Martin et al., 2011). I obtain a
posterior sample of 2,000 values by running the Gibbs sampler for 4,500 iterations thinning the chain
every 2th draw and discarding the first 500 draws as burn-in. For the partial m-probit, I use the
Consilium-package to obtain a posterior of 2,000 values. I run the Gibbs sampler for 40,500 iterations,
discarding the first 500 iterations as burn-in and thinned the chain for every 20th draw. For both
models, I run two chains sequentially using distinct seeds and starting values.
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Figure 2: Result from one of the Monte Carlo experiments (10 actors, majority rule, 500
proposals): Scatter plot of posterior means with 95% posterior intervals from the partial
m-probit and true coefficient values. The red circles indicate the parameters for which the
Gelman and Rubin (1992) convergence diagnostic does not support my choice of run length
(U. - PSRF > 1.1) and for which the chain should have been run longer. The dashed line
indicates the 45-degree line coinciding with a fitted linear regression line.

potentially up to a point where there is not variation in the aggregate outcome. In

other words, even if the aggregate voting record is available, it must exhibit variation

in order to apply the partial m-probit. In institutions where all actors have a high

average probability to vote one way or the other, there is a chance that the aggregate

voting record exhibits no variation and the partial m-probit can not reveal anything to

the analyst.

As an illustration, figure 3 shows the trace plot of the first 2500 iterations from one

of the simulations. The posterior mean is converging to the true value as expected

(upper panel). The mixing of the chains is satisfactory as indicated by decreasing

auto-correlation in the ACF plots (lower panel). Table 3 (appendix) shows also the

approximate computation time used for one simulation in each of the 16 experimental

conditions and the number of converged simulations. Generally, computation time

increases with the number of actors and sample size. While all models require more

time than an ordinary probit model, even for large institutions (100 actors), computa-

tional time is still acceptable (1.30h). From the limited simulations, it appears that

convergence speed of the Gibbs sampler depends on the number of actors and the

voting rule.

Across the simulations the 95% posterior intervals from the partial m-probit are

considerably larger than the probit intervals. Table 4 (appendix) summarizes the
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Figure 3: Trace plots (upper level) and ACF plots (lower panel) for one simulated parameter
set: Gibbs sampling trace plots from 2 chains for one Monte Carlo simulation (10 members,
majority rule, 500 decisions). The true parameters (blue line) are: intercept=0.6 and
slope=1. The red and green lines are the running posterior means for the two chains, and
the dashed line marks the burn-in period of 500 samples.

median range of the 95% posterior intervals for the partial m-probit and an ordinary

probit model in each of the 16 experiments. The relative differences of the slope

intervals across the two models are primarily a function of the numbers of actors, where

it is also a function of the voting rule for the intercept. For the slope interval, the

relative difference for the intervals is decreasing from 34% (for 5 actors) to 7% (for 100

actors). This demonstrates the primary price of aggregation an analyst has to pay in

addition to the computational costs: larger inferential uncertainty. This corresponds

to what has been observed for the bi-variate probit model with partial observability:
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“We would not be surprised to find, in a typical application, t-ratios to be from two to

four times as large under full observability as under partial observability” (Meng and

Schmidt, 1985, p.83).

4 Applications

In this section, I re-analyze two published studies applying the partial m-probit. In

the first part, I re-analyze a study on U.S. State Supreme Court voting. I contrast the

coefficient estimates from the authors’ probit model with the estimates from a partial

m-probit when I artificially delete the roll call votes from the dataset and only retain

the aggregate outcome. As in the Monte Carlo experiments, I show that inference

comes with greater uncertainty when analysts only posses an aggregate voting record

instead of the roll call voting records.

In the second part, I re-analyze a study on U.N. Security Council’s decision to deploy

U.N. peace operations. Voting records for the U.N. Security Council are not system-

atically available11. Different to the Supreme Court study, this study focuses not on

modeling vote choices but rather the aggregate outcome. I then show that applying

the partial m-probit (more precisely, the special case of a discrete choice model with a

‘B-link’) allows one to gain a richer set of empirical insights. In particular, I show the

predicted probability to approve a peace operation (which is different to the probability

of deployment) and investigate the effect of various voting rules on the probability of

deployment.

4.1 U.S. State Supreme Courts

Caldarone et al. (2009) test the prediction “that nonpartisan elections increase the

incentives of judges to cater to voters’ ideological leanings.” (p. 563). The rationale

for this argument is informational. In nonpartisan elections (compared to partisan

elections) voters have much less a priori information about judges’ ideological positions,

11To be clear: The decision to deploy a U.N. peace operation usually requires a resolution of the
U.N. Security Council which mandates the U.N. Secretary General to conduct this operation (Houck,
1993; Jonah, 1990). Resolutions can be adopted by consensus with or without vote (Bailey and Daws,
1998, p. 259). While most resolutions on peace operations appear to be voted upon, the U.N. Security
Council conveys “in public only to adopt resolutions already agreed upon” (Cryer, 1996, p. 518). “By
the time the resolutions come to a vote, it is usually known by all how much support there will be
for each” (Luard, 1994, p. 19). In this manner, most resolutions are adopted unanimously (Bailey
and Daws, 1998, p. 264) and in this sense the available records are not systematically available but
rather constitute a selective sample. Due to the space limit, I leave the extension of incorporating
such partially available roll call voting records into the partial m-probit to future research.
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because judges are not associated with any particular party. Consequently, voters rely

more heavily on the information about the judges’ ideological positions transmitted by

a judges’ decisions in a nonpartisan election than a in a partisan election. Anticipating

this, judges in nonpartisan elections have higher incentives to use their decisions to

signal their ideological positions than their counterparts in partisan elections.

In order to test their prediction, the authors assemble a dataset of State Supreme

Court decisions on abortion for the period 1980-2006. They collect these data for all

State Supreme Courts whose judges face contested, statewide elections. Their dataset

contains 19 State Supreme Courts and a total of 85 abortion decisions. Since State

Supreme Court sizes vary (in their dataset between 5 and 9) and the authors use

case-wise deletion to handle missing data, the total number of observed vote is 605 in

their baseline specification.

The dependent variable in the authors’ analysis is a regular justice’s vote. Using state-

level opinion data, the authors code each justice’s vote as either popular (if it leans

with the state’s public opinion) or unpopular. Consequently, the dependent variable

takes a 1 if either the justice votes ‘pro-choice’ and the state leans also ‘pro-choice’ or

if he votes ‘pro-life’ and the state also leans ‘pro-life’ (Caldarone et al., 2009, 565). In

the authors’ dataset, 261 votes are popular (43%). The author’s variable of interest

is a binary variable indicating if a Supreme Court Justice is elected in nonpartisan

elections. From the 85 abortion decisions, 39 have been made in a partisan electoral

environment (46%).

Using various controls, the authors find evidence for their hypothesis. A replication

of the authors’ baseline specification (Model 1 in their table) using a Bayesian Probit

Model with vague normal priors centered at 0 with a variance of 1012 appears in the

coefficient plot in figure 4 (the upper row of each coefficient) and in the regression

table 5 (appendix). Each variable’s estimated coefficient is displayed as a dot and the

95% and 68% posterior intervals are indicated (in two shades of gray). The simulated

posterior probability that there is a positive effect of nonpartisan elections is 1.

Applying the partial m-probit, I drop all votes from the authors’ dataset and only

retained a binary variable indicating if the Court passed a popular decision by majority

rule. Dropping all votes leaves me with 36 popular rulings (42%). In essence, dropping

all votes reduces the number of observations for the left-hand side of the regression

equation to 85, while it leaves the observations on the right-hand side unaffected

12A smaller prior variance would be well justified in this case. I used the MCMCpack probit model
(Martin et al., 2011) to obtain a posterior sample of 2,000 values by running the Gibbs sampler for
11,000 iterations thinning the chain every 5th draw and discarding the first 1,000 draws as burn-in. I
run two chains sequentially using distinct seeds and starting values. The Gelman-Rubin (Gelman and
Rubin, 1992) convergence diagnostic supports the choice of the run length.
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(Intercept)

Nonpartisan election

Justice’s party aligned pub. opinion

Election in 2 years

Facts aligned pub. opinion

Trespassing/Protests

Minors

Personhood

Pub. opinion intensity

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 4: Regression results: Bayesian probit model with justices’ voting record, N=605
(upper row) and Bayesian partial m-probit model with an aggregate voting record, N=85
(lower row). The dots indicates the posterior mean, the 95% and 68% posterior intervals are
displayed in two shades of gray.

(N=605). In order to estimate the partial m-probit13, I use the same vague normal

priors as above.

The results are displayed in the coefficient plot, figure 4 (lower row). For the main

variable of interest, nonpartisan election, the posterior probability that there is a

positive effect of nonpartisan elections, is still 0.9 - despite the sharp decrease in

available information on the left-hand side of the regression equation. The estimated

effects for the two controls, which exhibit within-case variance, are notable. The

effect of elections in two years is estimated with the same posterior mean but with

considerably larger posterior uncertainty. The effect of justice’s party aligned with

public opinion is estimated a little larger and also with more posterior uncertainty.

13I obtain a posterior sample of 2,000 values by running the Gibbs sampler for 86,000 iterations
thinning the chain every 40th draw and discarding the first 6,000 draws as burn-in. I run two chains
sequentially using distinct seeds and starting values. The Gelman-Rubin Gelman and Rubin (1992)
convergence diagnostic supports the choice of the run length.
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This demonstrates again the primary price analysts pay when using an aggregate voting

record: larger posterior uncertainty.

It is also interesting to compare the predictive power of the probit and partial m-probit

model. One useful statistic for this is the posterior predicted probability of a popular

vote. Using a cutoff of 0.5, I find that the authors’ model with the roll call voting

records predicts on average 371 votes correctly (61.3%). The 95% posterior interval

for this estimate is [59%-64%]. Since the estimated posterior means of the coefficients

are very similar, it is not surprising that the partial m-probit can be said to preform

equally as the authors’ model with the roll call voting records. The partial m-probit

predicts on average 379 votes correctly (62.6%). However, the posterior interval for this

estimate is larger reflecting the larger variance in the coefficient posteriors [54%-63%].

4.2 United Nations Security Council

Lisa Hultman studies if the U.N. Security Council is more likely to send U.N. peace

operations in post-Cold War conflicts between 1989-–2006 “where civilians are deliber-

ately targeted by the warring parties”, that is into conflicts with extensive one-sided

violence (Hultman, 2013, p. 59). Her dependent variable is the deployment decision in a

particular conflict-year. The main independent variable is the logarithm of the number

of civilians killed (one-sided violence, OSV). Using a logit model and conditional on

several other controls, she finds a positive effect between one-sided violence and the

probability for a U.N. peace operation deployment.

The first column (Model 1) in table 2 shows the replicated results from Hultman’s

‘Model 1’ using a Bayesian probit model with vague normal priors (centered at 0

and a variance of 10)14. Note, that the results are qualitatively the same as in the

original paper. However, due to some improvements of the data15 and a change in the

distributional assumption (Hultman uses a logistic regression), they are not numerically

14I obtain the result using the MCMCpack probit model (Martin et al., 2011) with the same priors
and running the Gibbs sampler for 11,000 iterations. I discard the first 1000 iterations as burn-in. I
run two chains sequentially using distinct seeds and starting values. The Gelman-Rubin (Gelman and
Rubin, 1992) convergence diagnostic supports my choice of run length.

15In order to make the estimation results numerically more stable, I rescale the variable ‘Year’ and
‘Polity’ and used the logarithm for the variables ‘Army Size’ and ‘Mountains’. I also treat observations
in the ‘Army Size’ variable that had a missing value code (‘-9’) not as actual values, but missing values.
This leads to a decrease in sample size by 13 observations. I follow Hultman and used list-wise deletion
for handling missing data. Hultman uses robust clustered standard errors to adjust the co-variance
matrix post-estimation for unobserved heterogeneity. Multiple imputation (Little and Rubin, 2002;
King et al., 2001) and random effects (Gelman and Hill, 2006; King and Roberts, 2012) are preferable
strategies to deal with these problems, but I set these issue aside to not further complicate the analysis.
In the appendix, table 6, I show the numerically identical results as presented by Hultman (2013) and
how they change sequentially when changing the distributional assumption and re-scale the variables.
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identical. The second column presents the results from the partial m-probit16 using

the same data and the U.N. Security Council’s voting rule, which is not a simple q-rule

but a veto majority rule. Specifically, nine out of 15 member states have to approve a

proposal, but each of the five permanent members (China, France, Russia, the United

Kingdom and the United States) has a veto. I use the same priors as for the Bayesian

probit model.

While the signs of the coefficients across model 1 and 2 are identical, their interpre-

tation differs: A positive (negative) signed coefficient in model 1 indicates that the

probability of a peace operation increases (decreases) if the corresponding predictor

variable increases. In Model 2, a positive (negative) signed coefficient indicates that

a member’s approval probability increases (decreases) if the corresponding predictor

variable increases.

As with other nonlinear models, it is useful to inspect the predicted probabilities for a

better understanding of the estimated effects. Figure 5 (left panel) shows the predicted

probabilities of mission deployment from model 2 for the typical case in Hultman’s data

and various levels of one-sided violence against civilians17. As expected, the correlation

between these predicted probabilities and those from the ordinary probit model equals

almost one (not shown).

In addition to the predicted probability of deployment, the partial m-probit permits

the calculation of the predicted probability of approving a U.N. peace operation. The

right panel shows the predicted probability for various levels of one-sided violence in

the typical case. Since none of the variables in model 2 varies across members for any

observation, the predicted probabilities to support a peace operation are identical for

all Council members. Compared to the effect size on the aggregate level, which is

quite small, the size of the effect on the actor-level is substantial. With rising levels of

one-sided violence, the probability to approve an operation increases on average from

32% to 45%.

This substantive difference between the two types of predicted probabilities is to

some extent a function of the voting rule. To illustrate this, I simulate the predicted

probability of deployment given five different veto-majority rules. The lowest line in

figure 6 is the same as in figure 5 (left panel). The lines above indicate the same

16I obtain the result by running the Gibbs sampler for 140,000 iterations. I discard the first
2000 iterations as burn-in and thinned the chain for every 70th draw. I run two chains sequentially
using distinct seeds and starting values. The Gelman-Rubin (Gelman and Rubin, 1992) convergence
diagnostic supports my choice of run length.

17By typical case, I mean the single observation in the dataset that is most similar (the nearest
neighbor) to the average case. In Hultman original data, the Mindanao conflict (Philippines) in 1996
is the typical case. Alternatively, one might use the observed-value approach as advocated recently by
Hanmer and Ozan Kalkan (2013) but which is computationally more intense.
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Bay. probit Bay. partial m-probit

(Intercept) -1.70 0.24
[-3.79; 0.42] [-0.77; 1.25]

log(OSV)t-1 0.08 0.04
[-0.02; 0.19] [-0.01; 0.09]

Year -0.02 -0.01
[-0.07; 0.04] [-0.04; 0.01]

Battle Deathst-1 0.08 0.03
[-0.01; 0.17] [-0.01; 0.08]

Population 0.06 0.02
[-0.23; 0.35] [-0.12; 0.16]

Polityt-1 -0.18 -0.09
[-0.64; 0.28] [-0.30; 0.12]

log(Army Size) -0.31 -0.14
[-0.55; -0.06] [-0.27; -0.02]

log(Mountains) 0.04 0.02
[-0.14; 0.21] [-0.07; 0.11]

Non-U.N. Operation 0.74 0.38
[0.21; 1.27] [0.07; 0.67]

P5 Colony -0.46 -0.23
[-0.98; 0.03] [-0.48; 0.01]

Num. obs 837 837

Table 2: Regression results: Bayesian probit model (col. 1) and Bayesian
partial m-probit model (col. 2), each with posterior means and 95%
posterior intervals in parentheses.
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Figure 5: Predicted probability of a U.N. peace operation deployment (left) and approving
a U.N. peace operation deployment (right): Posterior means and 95% posterior intervals
from model 2 for various levels of one-sided violence.
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Figure 6: Predicted probability of a U.N.
peace operation deployment for various levels
of one-sided violence and six different veto-
majority rules (lowest line: 5 vetos, highest
line: 0 vetos).

probability for four or less vetos. The figure suggests that the probability of a mission

is much larger the less vetos there are but also that the increase in probability for

greater civilian causalities is steeper the less vetos there are. The ability to statistically

quantify the effect of the veto complements formal work, showing the severe impacts of

the veto in the U.N. Security Council (e.g. O’Neill, 1996; Winter, 1996).
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The literature on U.N. Security Council decision-making and U.N. peacekeeping high-

lights the importance of diverging interests, especially among the permanent members,

as important predictors for U.N. Security Council activity (e.g. Fortna, 2008; Malone,

1998; Beardsley and Schmidt, 2012). However, in the models in table 2, the members

are assumed to be interchangeable. Hultman only attempts to relax this assumption by

including a covariate ‘P5 Colony’ which captures whether or not a permanent member

state was the last colonizer of the respective country.

I deliberately refrain from expanding the scope of Hultman’s analysis and do not include

new variables that vary across Council members. Leveraging the partial m-probit, such

an analysis would be feasible and, in fact, warranted given arguments in the literature,

but it remains outside the scope of this paper.

While it is necessary to assume interchangeable members when using a logit, probit

or B-link model, the same assumption must not be made when using a partial m-

probit. This suggests that the partial m-probit can also serve scholars by allowing

them to better align their theoretical arguments with their statistical modeling while

simultaneously obtaining broader empirical insights.

5 Conclusion

In many domestic and international institutions decisions are made by the means of

voting. Empirical research on these decision making processes is challenging since

scholars often only observe the outcome of the process (adoption or rejection of a

proposal) and not the individual voting decisions. When roll call voting records are not

available, studying how observable determinants are related to an actor’s vote choice is

difficult.

This paper introduced a statistical model, the partial m-probit, that allows one to

study the determinants of voting even if one can only observe the aggregate voting

record. The model is built to estimate the same effects and quantities of interest as

an ordinary probit model that one might estimate if the roll call voting records for

a series of proposals would be available. While the partial m-probit estimates the

same effects as an ordinary probit on the roll call voting records, the inference using

an aggregate voting record will come with more uncertainty (and this uncertainty is

primarily increasing in the number of actors voting in the institution), since aggregation

reduces the available information for inference.

I invoked two important independence assumptions in the model setup: First, I assumed

that actors’ vote choices are conditionally independent from each other for any proposal.
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Second, I assumed conditional independence across proposals. These assumptions have

to be invoked as well when analysts use an ordinary probit model to analyze the roll

call or the aggregate voting record and correspond to the sincere voting assumption

made in various ideal point models (e.g. Poole and Rosenthal, 1985; Clinton et al.,

2004). Under what circumstances will they be reasonable?

The first assumption can be a reasonable approximation as long as the actors have

not the formal right to make amendments and/or manipulate the sequence of voting

on the amendments18. Similarly, the second assumption is a good approximation if

the actors have not the ability to exchange votes across different proposals. Actors

have the ability to trade votes whenever they are able to credibly commit to vote in a

particular fashion on future proposals.

The validity of these assumptions could be questioned with respect to the institutions

analyzed above. In the U.N. Security Council for example, there is qualitative evidence

that suggests that at least the permanent members engage in vote trading across

proposals. Malone, for example, reports that the US persuaded Russia to tolerate

the Haiti intervention by promising to support a peacekeeping operation in Georgia

(Malone, 1998, p. 107). Similar trades might also happen in U.S. State Supreme

Courts. However, regular elections and term-limits might decrease the justices’ ability

to credibly commit.

A fruitful avenue for future research could be to identify ways to relax the independence

assumptions I invoked. For example, violations of the second assumption could be

mitigated by allowing for unobserved effects across proposals using a random intercept

across different groupings of proposals. This would also allow analysts to account for

unobservables across conflicts, countries or time periods. It might also be possible to

relax the assumption of independent votes and estimate the actors’ covariance matrix

using an additional Metropolis-Hasting sampling step similar to the approach in Chib

and Greenberg (1998).

The analysis of institutional vote choice data is a challenging endeavor in political

science. Sometimes these data are only available in form of an aggregate instead of a

roll call voting record. The partial m-probit is build to improve the analysis of such

aggregated vote choice data but as many other models it has its limitations when it

comes to dependencies between observations. Its applicability depends ultimately on

the aggregate voting record a research wants to analyze.

18In simple voting games, for example, with n players and two alternatives, voting for the most
preferred alternative is a weakly dominant strategy (e.g. Osborne, 2004, p. 48).
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6 Appendix

Full Conditionals

A) The full conditional for β is a product of a normal prior density and the likelihood

of J multivariate normal densities. Sampling is standard.

f(β|b0, B0, y∗, y, b, X) ∝ f(β|b0, B0)×
∏

j

f(y∗j |Xj,β)

= φ

(
(B-1

0 + X′X)-1(B-1
0 b0 + X′y∗), (B-1

0 + X′X)-1
)

.

(7)

B) The full conditional for y∗j is a truncated multivariate normal. Since the components

are uncorrelated (the covariance matrix is the identity matrix by assumption), sampling

can be conducted component-wise using the standard algorithm from Geweke (1991).

f(y∗j |b0, B0,β, y, b, X) ∝ f(y∗j |Xj,β)× f(yj|y∗j )

∝ f(y∗j |Xj,β, yj)

∝ φ(Xjβ)
∏

i

(
I(y∗ij ≥ 0)I(yij = 1) + I(y∗ij < 0)I(yij = 0)

)
.

(8)

C) The conditional density for yj is a set of Bernoulli densities with the constraint that

their sum is consistent with the observed bj.

f(yj|b0, B0,β, y, b, X) ∝ f(yj|y∗j )× f(bj|yj)

∝ f(yi|y∗j , bj)

∝
∏

i

(
Φ(y∗ij)

yij + (1 - Φ(y∗ij))
1-yij

)
×(

I(
∑

i

yij < R)I(bj = 0) + I(
∑

i

yij ≥ R)I(bj = 1)

)
.

(9)

To sample from this target density, it is useful to use accept-reject sampling (e.g. Robert

and Casella, 2004, p. 51). A simple version of an algorithm takes f(yj|y∗j ) as the

proposal density:
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1. Draw from

yj ∼


f(y1j|y∗1j)
...

f(yMj|y∗Mj)

(10)

2. Draw u ∼ U(0, 1)

3. Accept yj if u ≤
f(yj|y∗j )×f(bj|yj)

C×f(yj|y∗j )
otherwise repeat.

where C is a choosen constant s.t. C ≥ 1 absorbing the normalizing constant of the

target density and U(0, 1) is the uniform density on the interval [0, 1]. Note that:

f(yj|y∗j )× f(bj|yj)

C× f(yj|y∗j )
= f(bj|yj) (11)

if C is set to 1. Since f(bj|yj) is either 0 or 1, the acceptance ratio in the second step is

either 0 or 1. Hence, partically sampling does not require to draw from a uniform but

only requires to check if a proposed yj obeys the constrain implied by bj.
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Gibbs Sampler

Denote the sth draw with superscript (s). The Gibbs sampler appears below. Note,

that the second and third step are a special case of the Gibbs sampler in Chib and

Greenberg (1998) where the covariance matrix is known to be the identity matrix and

does not need to be inferred from the data.

1. For all J draw element-wise a proposal for vector y
(s)
j from Bernoulli:

y
(s)
ij ∼ Bern(Φ(xijβ

(s-1)))

and accept the proposed vector if
∑

i y
(s)
ij < R and bj = 0 or

∑
i y

(s)
ij > R if

bj = 1. Otherwise repeat until acceptance.

2. Draw for all j = 1, ..., J and i = 1, ..., M from Truncated Normals:

y
∗(s)
ij ∼

 φ(xijβ
(s-1))I(y

∗(s)
ij ≥ 0) if y

(s)
ij = 1

φ(xijβ
(s-1))I(y

∗(s)
ij < 0) if y

(s)
ij = 0

3. Draw from a Multivariate Normal:

β(s) ∼ φ(b0, B0)

b0 = (B-1
0 + X′X)-1(B-1

0 b0 + X′y∗(s))

B0 = (B-1
0 + X′X)-1

with X and y∗(s) ordered correspondingly.

4. Repeat S times until convergence.
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Predicted Probability Calculation

The following Monte Carlo scheme approximates the predicted probability for the

aggregate outcome P(b = 1|X̃) for one draw of coefficients from the posterior density

(β(s)):

1. For each actor i, i = 1, ..., M and posterior draw s, generate a value y
(t)
i from:

y
(t)
i = Bern(Φ(x̃iβ

(s)))

2. Compute b(t) using:

b(t) =

{
0 if

∑M
i=1 y

(t)
i < R

1 otherwise

3. Repeat T times.

After obtaining T values for b, averages them to obtain an estimate for the predicted

probability for posterior draw β(s). Repeating the algorithm above for each posterior

draw s, s = 1, ..., S yields the posterior density of the predicted probability that can

then be summarized in any desired way.
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Posterior Interval Range

Intercept Slope

M R J Sim. PMP Probit % PMP Probit %

5 3 500 250 0.16 0.11 68.2 0.30 0.10 33.8
5 4 500 250 0.17 0.11 64.7 0.30 0.10 33.6
10 6 500 250 0.12 0.08 62.5 0.31 0.07 22.3
10 7 500 250 0.13 0.08 58.9 0.32 0.07 22.2
50 26 500 250 0.06 0.03 58.9 0.32 0.03 09.6
50 33 500 250 0.09 0.03 39.0 0.33 0.03 09.7
100 51 500 250 0.04 0.02 64.0 0.31 0.02 07.1
100 67 500 250 0.08 0.03 31.0 0.32 0.02 07.0
5 3 250 250 0.24 0.16 67.8 0.43 0.15 33.8
5 4 250 250 0.25 0.16 63.6 0.44 0.14 33.0
10 6 250 250 0.18 0.11 61.6 0.47 0.10 22.3
10 7 250 250 0.19 0.11 58.7 0.44 0.10 22.9
50 26 250 250 0.08 0.05 61.6 0.44 0.04 09.9
50 33 250 250 0.12 0.05 41.3 0.47 0.05 09.7
100 51 250 250 0.05 0.03 64.0 0.44 0.03 07.1
100 67 250 250 0.12 0.04 30.8 0.49 0.03 06.8

Table 4: Results from 16 Monte Carlo Experiments: The number of political actors (M),
the voting rule (R), the number of proposals (J), the number of simulations per experiment
(Sim.), for all converged simulations the median range of the 95% posterior interval from the
partial m-probit (PMP), the median range of the 95% posterior interval from an ordinary
probit model (Probit) and the differences of the probit model posterior interval compared
to the partial m-probit interval (in percent).
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Model 1 Model 2

(Intercept) -0.65 -0.53
[-1.06; -0.25] [-1.20; 0.08]

Nonpartisan election 0.51 0.22
[0.25; 0.76] [-0.13; 0.57]

Justice’s party aligned pub. opinion 0.23 0.36
[0.02; 0.45] [-0.12; 0.83]

Election in 2 years 0.13 0.20
[-0.11; 0.36] [-1.07; 1.41]

Facts aligned pub. opinion 0.47 0.11
[0.24; 0.70] [-0.19; 0.41]

Trespassing/Protests 0.40 0.36
[0.05; 0.76] [-0.10; 0.83]

Minors 0.44 0.17
[0.05; 0.84] [-0.36; 0.71]

Personhood -0.28 -0.07
[-0.64; 0.09] [-0.53; 0.40]

Pub. opinion intensity 0.12 0.05
[0.01; 0.22] [-0.09; 0.20]

Num. obs 605 85

Table 5: Regression results for U.S. Supreme Court application: Bayesian
probit model (col. 1) and Bayesian partial m-probit model (col. 2), each
with posterior means and 95% posterior intervals in parentheses.
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Model 1 Model 2 Model 3

(Intercept) 35.39 35.27 -1.67
(117.21) (52.29) (0.98)

OSVt-1 0.16 0.07 0.08
(0.06) (0.03) (0.03)

Year -0.02 -0.02
(0.06) (0.03)

Year (scaled) -0.01
(0.03)

Battle Deathst-1 0.16 0.06 0.07
(0.10) (0.05) (0.05)

Population 0.08 0.02 0.06
(0.24) (0.11) (0.14)

Polityt-1 -0.04 -0.02
(0.05) (0.02)

Polityt-1 (scaled) -0.17
(0.24)

Army Size -0.01 0.00
(0.00) (0.00)

log(Army Size) -0.29
(0.13)

Mountains 0.00 0.00
(0.01) (0.00)

log(Mountains) 0.03
(0.07)

Non-U.N. Operation 1.78 0.79 0.73
(0.52) (0.23) (0.25)

P5 Colony -1.10 -0.47 -0.44
(0.58) (0.29) (0.28)

Num. obs. 850 850 837

Table 6: Replication Results: Maximum likelihood estimation, logistic regression coefficients
with clustered, robust standard errors based on conflict location in parentheses (Model 1),
probit regression coefficients (Model 2-3). Model 1 is the model presented in Hultman (2013).
Variables with a subscript t-1 indicate lagged variables. Model 2 is the same as Model 1
but with a probit link function. Model 3 uses various transformed variables. A ‘(scaled)’
indicates scaling based on either the smallest observed value (Year) or to the interval [0, 2]
(Polityt-1). Variable names wrapped by ‘log( )’ are log-transformed. The sample size is
reduced since values in the variable ‘Army Size’ that had a missing value code, are treated
as missing values.
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